Угол между векторами как пишется

Как найти угол между векторами

Угол между векторами

Угол между векторами — это угол между отрезками, которые изображают эти две направляющие и которые отложены от одной точки пространства. Другими словами — это кратчайший путь, на который можно повернуть один из векторов вокруг его начала до положения общей направленности со вторым.

На изображении это α, который также можно обозначить следующим образом:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Как и любой другой угол, векторный может быть представлен в нескольких вариациях.

Острый:

Тупой:

Прямой:

С величиной \(0^\circ\) (то есть, векторы сонаправлены):

С величиной \(180^\circ\) (векторы направлены в противоположные стороны):

Нахождение угла между векторами

Как правило, угол между \( \overrightarrow a\) и \(\overrightarrow b\) можно найти с помощью скалярного произведения или теоремы косинусов для треугольника, который был построен на основе двух этих направляющих.

Скалярное произведение — это число, которое равно произведению двух направляющих на косинус угла между ними.

Формула скалярного произведения:

\(\left(\overrightarrow a;\overrightarrow b\right)=\left|\overrightarrow a\right|\times\left|\overrightarrow b\right|\times\cos\left(\widehat<\overrightarrow a;\overrightarrow b>\right)\)

В случае, если \overrightarrow a и \overrightarrow b не нулевые, можно найти косинус α между ними, опираясь на формулу:

Расчет угла, если вектор задан координатами

Если же координаты находятся в трехмерном пространстве и заданы в виде:

то формула принимает такой вид:

Расчет угла, если заданы три точки в прямоугольной системе координат

В этом случае проще будет разобраться с объяснениями сразу на примере.

Читайте также:  Флешке или флешки как пишется

Решение

Для начала найдем их координаты по известным координатам заданных точек:

После этого уже можем применить формулу для определения косинуса угла на плоскости и подставить известные значения:

Примеры решения задач

Для наглядности, взглянем на примеры решения задач по данной теме.

Задача 1

Решение

Подставим известные значения:

Далее найдем угол между данными векторами:

Задача 2

Решение

Используем формулу для нахождения косинуса угла между направляющими в трехмерной системе координат:

Подставляем значения и получаем:

Теперь находим угол α:

Задача 3

Источник

Угол между векторами.

Формула вычисления угла между векторами

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Угол между векторами

1) Углом между векторами

называется угол BAC:

2) Углом между двумя ненулевыми векторами называется угол между векторами, равными данным и имеющими общее начало.

Поскольку нулевой вектор считается коллинеарным любому вектору, если один из векторов нулевой либо если оба вектора нулевые, то и в этом случае угол между векторами равен 0°.

Читайте также:  Услышь как пишется с мягким знаком или без

Угол между равными векторами также равен 0°.

Угол между противоположно направленными векторами равен 180°.

Если угол между векторами равен 90°, то такие векторы называются перпендикулярными.

Рассмотрим понятие угла между векторами на конкретных примерах.

Определить угол между векторами:

1) Данные векторы не сонаправлены.

Выберем некоторую точку и от неё отложим векторы, равные данным.

Угол между ними равен α.

Значит, и угол между данными векторами равен α.

2) Данные векторы противоположно направлены.

Значит, угол между ними равен 180°:

Проиллюстрируем этот результат, отложив векторы, равные данным, от одной точки:

3) Поскольку данные векторы сонаправлены, угол между ними равен 0°:

4) Отложим данные векторы от общего начала.

Так как угол между ними равен 90°:

Угол между векторами можно найти с помощью их скалярного произведения.

Источник

Угол между векторами – теория и примеры нахождения

Угол между векторами a и b – это тот угол, который находится между лучами и может получаться от 0 до 180 градусов. Как правило, угол находится при помощи скалярного произведения векторов или благодаря теореме косинуса для треугольника.

Угол между векторами

Рассмотрим, как получается угол между векторами. Пусть заданы ненулевые векторы и . Соединим эти векторы с общей точкой и в направлениях векторов и проведём с точки лучи (см. рис. 1)

Угол между вектором и нулевым вектором не обозначается.

Очевидно, что если , тогда ^ = . Если же , тогда ^ = .

Скидка 100 рублей на первый заказ!

Акция для новых клиентов! Разместите заказ или сделайте расчет стоимости и получите 100 рублей. Деньги будут зачислены на счет в личном кабинете.

Примеры нахождения угла между векторами

В теме разобрались и теперь осталось закрепить её при помощи нескольких примеров.

Найти угол между векторами = и =

Для начала нужно найти скалярное произведение векторов:

x = + x =

Следующий шаг – найти модуль вектора:

= = = =

= = = =

Теперь находим угол между векторами:

Читайте также:  Укажите свой адрес а также напишите реквизиты карты как пишется орфография

= = = = =

Найти угол между векторами и

Решение:

Находим модели векторов:

Находим угол между векторами:

= = =

Источник

Формула угла между векторами

Угол между двумя векторами

Рассмотрим понятие угла между двумя направлениями в пространстве.

Как и на плоскости, в пространстве направлением называется множество всех лучей, каждый из которых сонаправлен с данным. Таким образом, любой луч из данного множества сонаправленных лучей вполне определяет это направление (подобно тому, как любой направленный отрезок вполне определяет вектор, который он изображает). Поэтому направление в пространстве обычно задают при помощи только одного луча.

Углом между двумя направлениями называется величина наименьшего угла между любыми лучами этих направлений с общим началом.

Угол между лучами l1 и l2 обозначается \(\widehat\). По определению угол между двумя направлениями находится в промежутке [0°; 180°].

Углом между двумя ненулевыми векторами называется угол между направлениями этих векторов. Угол между векторами а и b (рис. 21) обозначается \(\widehat\)

Если угол между векторами а и b равен 90°, то эти векторы называют перпендикулярными (или ортогональными) и пишут: аb.

Тогда векторы \(\overrightarrow\) и \(\overrightarrow\) называются единичными векторами прямой l (рис.22).

Прямая, на которой выбрана точка О (начало отсчета), задано положительное направление и задана единица измерения длины, называется осью. Вектор е (|е| = 1), задающий направление оси, называется единичным вектором оси (рис. 23).

Углом между вектором и осью, называется величина угла между направлением оси и направлением вектора (рис. 24).

Вычисление угла между двумя векторами.

По определению скалярного произведения

т. е. косинус угла между ненулевыми векторами а и b равен скалярному произведению этих векторов, деленному на произведение их длин.

и поэтому, используя равенство (1), получим формулу

Эта формула позволяет вычислить косинус угла между векторами а и b по координатам этих векторов.

Если векторы а = (x1 ; y1 ) и b = (x2 ; y2) заданы в прямоугольной декартовой системе координат на плоскости, то косинус угла между ними вычисляется по формуле

Задача 1. Даны два вектора а = (3; 4) и b = (4; 3). Найти угол между ними.

Подставив координаты векторов в формулу (3), получим

откуда (по таблице) \(\widehat<(a; b)>\) ≈ 16°.

Задача 2. Найти косинус угла между векторами

Источник

Поделиться с друзьями
Познавательное и интересное
Adblock
detector