Удлинение как пишется в физике

Изменение длины, закон Гука

Для того, чтобы иметь полную картину работы растянутого или сжатого стержня, необходимо уметь вычислять то, как будут под нагрузкой меняться его размеры:

Сначала проанализируем изменение длины.

От чего же зависит удлинение стержня?

Снова вернёмся к диаграммам из опытов на растяжение. Напомню, нас интересует только начальная (линейная) часть графика.

Так как мы рассматриваем только прямой отрезок на графике, то его можно описать с помощью линейной функции:

Здесь в качестве y выступает приложенная сила P (размерность в Н), а в качестве x – удлинение ∆L (размерность в мм). Получаем:

Перезаписав эту формулу относительно удлинения, получим:

Допустим, перед нами стоит задача определить удлинение стержня при заданной растягивающей нагрузке. Но откуда взять коэффициент жёсткости k?

Для ответа на этот вопрос следует провести серию сравнительных опытов. Суть их такова, что надо прикладывать одну и ту же силу к почти одинаковым образцам и через различия в удлинениях сделать вывод о влиянии (или отсутствии такового) на коэффициент жёсткости тех факторов, которые были выбраны разными.

Допустим, что коэффициент жёсткости зависит от длины стержня L. Берём два почти идентичных стержня одинаковой толщины из одного и того же материала, только один, например, в два раза длиннее другого. Растягиваем их одинаковой силой. Так как длинный стержень, по сути, «содержит в себе» два коротких, то его удлинение также будет в два раза больше удлинения короткого стержня. Вывод из этого опыта: коэффициент жёсткости стержня зависит от его длины. Чем короче стержень, тем он жёстче.

Или другой опыт: возьмём два стержня одинаковой длины из одного и того же материала, только один стержень будет толще другого так, что площадь его поперечного сечения F будет в два раза больше площади поперечного сечения другого стержня. После растяжения их одной и той же силой можно заметить, что более тонкий стержень удлинится в два раза больше, чем более толстый. Отсюда вывод, что коэффициент жёсткости стержня зависит от площади поперечного сечения. Чем толще стержень, тем он жёстче.

Эти два опыта исчерпывающе показывают зависимость коэффициента жёсткости стержня от его геометрии. Однако коэффициент жёсткости зависит также и от материала этого стержня. Два одинаковых по форме стержня из стали и из дерева будут иметь совершенно разные коэффициенты жёсткости. Что именно в материалах создаёт такие различия – неизвестно.

Мы всё неизвестное в материале, что так или иначе вызывает различия в коэффициентах k, заключим в одну величину и обозначим её буквой E.

В итоге получим экспериментальную зависимость для коэффициента жёсткости :

Зная размерность жёсткости [k]=Н/мм, можно найти размерность E:

Эту величину впервые ввёл английский физик Томас Юнг.

Эта величина E называется модулем упругости материала при растяжении (или модулем Юнга), и она характеризует способность твёрдого тела упруго деформироваться при приложении к нему растягивающей силы.

По сути же, она является макроскопическим следствием микроскопических связей в веществе. Как же определить модуль упругости для того или иного материала?

Для начала запишем итоговую формулу для удлинения стержня:

Выразим отсюда модуль упругости:

Для определения модуля Юнга необходимо:

Величины модулей упругости и плотности некоторых материалов:

Что касается сжатия, то при сравнении модулей Юнга при растяжении и сжатии большинства материалов, можно заметить незначительные различия в их величинах. Этими различиями часто пренебрегают.

Так как рассматривается только линейный участок, то и значения модулей Юнга соответствуют жёсткости материала на линейном участке.

Однако в инженерной практике бывают случаи, когда, например, напряжения в металле выходят за предел пропорциональности. Когда это происходит, то значения модуля Юнга начинают уменьшаться по сравнению со значением в упругой зоне.

В итоге мы имеем формулу для нахождения изменения длины при растяжении или сжатии:

Это – экспериментальный закон Гука. По этой формуле можно находить изменения длины в стержнях или колоннах, испытывающих осевое растяжение или сжатие. Однако, хотя данная формула и позволяет считать изменения длины для элементов под осевой нагрузкой, она является упрощением реальной картины происходящего. Что это означает? Поясню на примере:

Желая растянуть стержень, например, 100 килограммами, мы эти 100 килограмм будем прикладывать очень медленно. То есть сначала приложим только килограмм, потом два, три и т.д. вплоть до ста. Но ведь проблема в том, что при нагружении одним килограммом, стержень уже удлинится. То есть чтобы подсчитать удлинение при действии двух килограммов, придётся брать изначальную длину стержня, которая будет соответствовать длине растянутого одним килограммом стержня. И так далее. Но если вы проведёте точный расчёт даже для относительно мягкого алюминия, вы обнаружите, что различие между точным и приближённым расчётом будет ничтожно мало. Потому, на практике применяется приближённый расчёт.

Читайте также:  Федоровна на английском языке как пишется

То же самое и с площадью поперечного сечения. Стержень сужается не только в пластической зоне (где это сужение видно невооружённым глазом), но и в линейной (упругой), где это изменение можно отследить только с помощью точных приборов. А так как мы имеем дело в основном с линейной частью графика, то потому берётся изначальная площадь поперечного сечения. Это явление (сужение при удлинении) будет рассмотрено чуть позже.

Формулу для нахождения удлинений можно видоизменить, перейдя к относительным величинам.

Сила, приходящаяся на единицу площади – это напряжение, с которым уже имели дело:

Удлинение, приходящееся на единицу длины – это относительное удлинение. Обозначим эту величину греческой буквой ε:

Это – закон Гука в относительной форме. Можно заметить, что размерность модуля Юнга – паскали, как и размерность напряжения. Исходя из этого, можно дать определение модулю Юнга, как фиктивному напряжению, при котором стержень удлинится на величину своей исходной длины. Но так как удлинения в конструкционных металлах просто ничтожны по сравнению с исходными длинами, то и модуль Юнга в разы больше, чем действующие напряжения.

Рассмотренные случаи являются лишь частными случаями осевого нагружения тела. Очень часто бывает так, что

В качестве немного более общего примера решим задачу.

Задача: Определить удлинение конического бруса при действии собственного веса, если высота конуса равна L, диаметр основания равен D, вес единицы объёма материала равен γ (плотность тела с размерностью силы (ньютоны) поделённые на объём (кубические метры, миллиметры и т.п.)), модуль упругости материала равен E. Известно, что материал конуса при растяжении от собственного веса работает в пределах упругости и к нему применим закон Гука.

Объём конуса определяется по формуле:

Вес конуса равен удельному весу материала, умноженному на объём конуса:

Введём систему координат и выделим элемент бесконечно малой длины dx на расстоянии x от вершины конуса

По свойству бесконечно малых величин, усилия и напряжения на верхней и нижней поверхности элемента от действия нижележащей массы будут равны.

При небольшом угле конуса можно сделать допущение, что растягивающие напряжения равномерно распределены по поперечному сечению (в реальности напряжения будут выше на краях). Нужно вывести выражение для растягивающего усилия для любого сечения на расстоянии x от вершины конуса. Диаметр любого сечения, отстоящего от вершины конуса на x можно найти из подобия треугольников.

Элемент длиной dx, площадью F(x) растягивается силой P(x). Требуется найти удлинение элемента dx:

Теперь нужно просуммировать удлинения всех элементов dx по высоте конуса L:

В итоговом выражении для удлинения отсутствует диаметр основания из-за сделанного нами допущения, которое справедливо только для конусов с малым углом (т.е. очень острых конусов). Для всех остальных конусов решение будет иметь более сложный вид.

В целом, суть решения всех задач по осевому растяжению/сжатию тел сводится к определению удлинений отдельных его частей/частиц и к итоговому их суммированию для получения общего удлинения. Для получения напряжения в любом поперечном сечении нужно найти силу, действующую в нём, и поделить её на площадь этого сечения.

Источник

Модуль Юнга

Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела.

Это свойство любого материала, и оно зависит от температуры и оказываемого давления.

В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации.

Другими словами: когда тело деформируется, то появляется сила, которая стремится восстановить первоначальную форму и размер тела. Сила упругости является этой проявляющейся силой. Также она представляет собой следствие электромагнитного взаимодействия между частицами.

Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным.

Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является неэластичным или жёстким.

Примеры значений модуля Юнга (упругости) для:

Таблица

Большинство материалов имеют значение E очень высокого порядка, поэтому они записываются при помощи «гигапаскалей» ([ГПа]; ).

Материал Модуль Юнга E, [ГПа]
Алмаз 1220
Алюминий 69
Дерево 10
Кадмий 50
Латунь 97
Медь 110
Никель 207
Резина 0,9 (≈ 1 МПа, мегапаскаль)
Сталь 200
Титан 107

Единица измерения и формулы

Единица измерения модуля Юнга в СИ — Ньютон на метр в квадрате (Н/м²), т.е. Паскаль (Па).

Формулы

Существует несколько формул, из которых можно вычислить модуль Юнга. Например, эта формула:

Либо можно выразить k (жёсткость тела):

Закон Гука

Можно вычислить модуль Юнга через эти формулы (мы это и сделаем на примере). Из-за этого закона существуют несколько интересных равенств, которые могут быть полезны для расчётов.

Закон Гука (этот описывает явления в теле, в дифференциальной форме):

Закон Гука (этот описывает явления в теле)

Пример решения задачи (через закон Гука):

Проволока длиной 2,5 метра и площадью поперечного сечения 2,5 миллиметра² удлинилась на 1 миллиметр под действием силы 50 ньютонов. Определить модуль Юнга.

Будем искать через закон Гука (σ = E × ε).

Помним из закона Гука:

σ = F / S (помните, что Fупр/S — механическое напряжение, обозначается как σ)

ε = Δl/l (а это относительное удлинение, обозначается как ε)

Подставляем в формулу (σ = E × ε):

Например, в нашей таблице такой модуль Юнга имеет кадмий.

Источник

Все формулы

Все формулы по физике и математике

Темы по физике

Темы по математике

Абсолютное удлинение

Сообщение от администратора:

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите СЮДА

Абсолютное удлинение — Показывает на сколько изменилась длина тела (увеличилась или уменьшилась).

[Метр]

Для того, чтобы было более понятно, что же такое абсолютное удлинение, давайте рассмотрим такой пример. У нас есть металлическая труба длиной 10 метров. К трубе приложили некую силу (сжали ее) и длина трубы стала 2 метра. Тогда абсолютное удлинение будет рассчитываться как:

То есть, длина тела изменилась на 8 метров.

В Формуле мы использовали :

— Абсолютное удлинение тела

— Начальная длинна тела

— Длина тела, после приложения на него силы

Псс.. Ты хочешь зарабатывать на маркетплейсах?

Узнай, какой товар пользуется спросом, поставь его на маркетплейс и начни зарабатывать!
Переходите по моей ссылке и получите бесплатный доступ к системе аналитики! По промокод VASILIK50 скидка 50% на любой тариф!

Вы можете увидеть, как зарабатывает тот или иной продавец, сколько раз и на какую сумму продался каждый конкретный товар. Оценить ниши в целом и многое другое. В системе есть обучение, проводятся вебинары.

Попробуйте. По моей ссылке будет бесплатный доступ на несколько дней.
Жмите СЮДА

Источник

Сила упругости

Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.

Виды деформации

Деформация – это изменение формы, или размеров тела.

Есть несколько видов деформации:

Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.

Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.

Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.

В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.

Растяжение пружины

Рассмотрим подробнее деформацию растяжения на примере пружины.

Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина \(L_<0>\) пружины.

Подвесим теперь к пружине груз. Пружина будет иметь длину \(L\), указанную на рисунке справа.

Сравним длину нагруженной пружины с длиной свободно висящей пружины.

\[ \large L_ <0>+ \Delta L = L \]

Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину \(L_<0>\).

\( L_ <0>\left(\text <м>\right) \) – начальная длина пружины;

\( L \left(\text <м>\right) \) – конечная длина растянутой пружины;

\( \Delta L \left(\text <м>\right) \) – кусочек длины, на который растянули пружину;

Величину \( \Delta L \) называют удлинением пружины.

Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.

Примечание: Отношение – это дробь. Относительное – значит, дробное.

\( \varepsilon \) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.

Расчет силы упругости

Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.

Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.

Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.

Закон Гука

Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал \( F_<\text<упр>> \) силой упругости.

\[ \large \boxed< F_<\text<упр>> = k \cdot \Delta L >\]

Эту формулу назвали законом упругости Гука.

\( F_<\text<упр>> \left( H \right) \) – сила упругости;

\( \Delta L \left(\text <м>\right) \) – удлинение пружины;

\( \displaystyle k \left(\frac<\text<м>> \right) \) – коэффициент жесткости (упругости).

Какие деформации называют малыми

Закон Гука применяют для малых удлинений (деформаций).

Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.

Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.

Как рассчитать коэффициент жесткости

Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.

Так как силы взаимно компенсируются, в правой части уравнения находится ноль.

\[ \large F_<\text<упр>> — m \cdot g = 0 \]

Подставим в это уравнение выражение для силы упругости

\[ \large k \cdot \Delta L — m \cdot g = 0 \]

Прибавим к обеим частям вес груза и разделим на измеренное изменение длины \(\Delta L \) пружины. Получим выражение для коэффициента жесткости:

Соединяем две одинаковые пружины

В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.

Параллельное соединение пружин

На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину \(\Delta L\). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.

Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом \(mg\).

\[ \large k_ <1>\cdot \Delta L = m \cdot g \]

Две параллельные пружины:

\[ \large k_<\text<параллел>> \cdot \Delta L \cdot \frac<1><2>= m \cdot g \]

Так как правые части уравнений совпадают, левые части тоже будут равны:

\[ \large k_<\text<параллел>> \cdot \Delta L \cdot \frac<1><2>= k_ <1>\cdot \Delta L \]

Обе части уравнения содержат величину \(\Delta L \). Разделим обе части уравнения на нее:

Умножим обе части полученного уравнения на число 2:

Коэффициент жесткости \(k_<\text<параллел>>\) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной

Последовательное соединение пружин

Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину \(\Delta L\). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.

Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.

На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину \(\Delta L\).

Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений

Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом \(mg\).

\[ \large k_ <1>\cdot \Delta L = m \cdot g \]

Две последовательные пружины:

\[ \large k_<\text<послед>> \cdot \Delta L \cdot 2 = m \cdot g \]

Так как правые части уравнений совпадают, левые части тоже будут равны:

\[ \large k_<\text<послед>> \cdot \Delta L \cdot 2 = k_ <1>\cdot \Delta L \]

Обе части уравнения содержат величину \(\Delta L \). Разделим обе части уравнения на нее:

Разделим обе части полученного уравнения на число 2:

Коэффициент жесткости \(k_<\text<послед>>\) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной

Потенциальная энергия сжатой или растянутой пружины

Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину \(\Delta L \) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу, например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.

Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).

Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:

\[ \large \boxed < E_

= \frac <2>\cdot \left( \Delta L \right)^ <2>>\]

\( E_

\left( \text <Дж>\right)\) – потенциальная энергия сжатой или растянутой пружины;

\( \Delta L \left(\text <м>\right) \) – удлинение пружины;

\( \displaystyle k \left(\frac<\text<м>> \right) \) – коэффициент жесткости (упругости) пружины.

Источник

Поделиться с друзьями
Познавательное и интересное
Adblock
detector